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1. Problem / Query 2. Interaction Network/Graph?

Real-time monitoring of Neighborhood Profile An interaction network is defined as a sequence of timestamped interactions € over edges of a static graph G = (V,E).

of a node for a given time window in an
For example:
interaction network.
» Social interaction in social network.
For example queries like
» Email/ Message or call interaction in communication network.
» How many distinct nodes are at shortest
, , » Data exchange between computer network.
distance r from a node v at time t?

. In a sliding window model only the edges falling under the window length is considered.
» How many distinct nodes were at shortest

distance r from a node v at time t and f-w? Below is a toy network and three snapshot graphs with a window size 3.
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3. Challenges! 4. Exact Summary to answer Neighborhood queries

» Dynamic graph : Edges coming as stream

and old edges going out of window so every

snapshot is a new graph.

» No online real-time system available

» Existing Solutions (HyperANF) : Iterative

and non scalable for real time query.

5.Intituion behind the algorithm
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» Maintaining a list of promising paths and
path horizons of length less then or equal to
r of every node.

» Propagating the changes to neighbors as
follows
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SY [r] = merge(SY[r-1] ,SU[r]) V u e Ny(v)
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7. Time and Space Complexity New edge will update S[1]ofaandd 2" Super Step: 3rd Super Step:
15t Super Step: All nodes had changes in their S[2] at  Only node ¢ and e had a change in
a and d propagate their S[1] to their last step so this step they propagate their summary in last step so they
neighbors to update S[2] S[2] to their neighbors to update S[3]  will only propagate to their neighbors

For a graph G with n nodes and m distinct

edges and r be the upper bound on the
distances 8. Results : DBLP data set (nodes : 192357, edges : 400,000, interactions : 800,000)

» For the exact algorithm (using Set)
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» Time complexity : O(r m 2Xloglog(n)) €ages tin thousands) edges (in thousands) edges (in thousands)
» Space complexity : O(r n2¢loglog(n)) T}me to process 1000 edges for Memory Utilization as function of k Time(log scale) to process 1000 edges
> Standard error : ~ 1.04 / v b : b #buckets different k for different distance r
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