
Finding simple temporal cycles in an interaction
network

Rohit Kumar1 and Toon Calders1,2

1 Université Libre de Bruxelles, Belgium
rohit.kumar@ulb.ac.be??

2 Universiteit Antwerpen, Belgium
toon.calders@uantwerpen.be

Abstract. Interaction networks differentiate themselves from the tra-
ditional networks in the sense that nodes interact continuously and re-
peatedly. Hence, when studying patterns in interaction networks it is
essential to take into account the temporal nature of the data. In this
paper, we present preliminary work on the problem of finding cyclic in-
teraction patterns; for instance: one person transfers money to a second
person, who transfers it to a third person transferring the money back
to the first person. It is important here that the cycle occurs in the right
temporal order, and that the time interval between the first and the last
interaction of the cycle does not exceed a given time window. Cyclic pat-
terns represent highly useful information; they are for instance used to
detect specific types of fraud in financial transaction networks. Further-
more, as our results show, datasets from different domains show different
behavior in terms of number and size of cycles. As such, cycles capture
essential differences in temporal behavior of interaction networks.

1 Introduction

With the advancement of the current digital era, very large temporal graphs are
becoming quite common. Examples include the re-tweet network, online trans-
actions, and phone or SMS communication. Most studies that aim at finding
local or global patterns in such networks concentrate on static networks only, in
which the links are relatively stable, such as for instance friendship links in social
networks. In this paper, we are interested in the interactions that take place in
such networks themselves, not the static structure they create. In order to study
the dynamics of these networks, it is essential to take the temporal nature of the
interactions into account [3].

Recently, Paranjape et al. [5] introduced an algorithm for counting the num-
ber of occurrences of a given temporal motif in a temporal network. In their
paper the authors show that datasets from different domains have significantly
different motif counts, showing that temporal motifs are useful for capturing
differences in temporal behavior. Our paper can be seen as an extension of this

?? Supported by Fonds de la Recherche Scientifique under Grant no T.0183.14 PDR

work to cyclic patterns, of any length, and constrained by a time window. Cy-
cles appear naturally in many problem settings. For instance, in logistics if the
interactions represent resources being moved between facilities, a cycle may indi-
cate an optimization opportunity by reducing excessive relocation of resources;
in stock trading cyclic patterns may indicate attempts to artificially create high
trading volumes; and in financial transaction data cycles could be associated to
specific types of fraud. The potential of cycles in the context of fraud detection
has already been acknowledged [1].

Detecting or enumerating cycles in a directed static graph has already been
studied for decades [2]. The existing algorithms for enumerating cycles in static
graphs, however, do not directly apply to temporal networks. This paper is the
first one to extend the problem of enumerating all cycles to temporal networks.
We propose an algorithm for mining cycles without repeating nodes that occur
within a given time window, in one scan over a given set of interactions ordered by
interaction time. In our experiments we observe that cycle length and frequency
distribution varies based on the characteristics of the network.

2 Preliminaries

b
5,8,10

##
a

1
;;

1 // c
7
//

6{{

e

10

{{

d

8
cc

f

12

ZZ

Fig. 1. Example temporal network

Let V be a set of nodes. An interaction is
defined as a triplet (u, v, t), where u, v ∈
V , and t is a natural number representing
the time the interaction took place. In-
teractions are directed and could denote,
for instance, the sending of a message in
a communication network. Multiple edges
can appear at the same time. A temporal
network G(V, E) is a set of nodes V , to-
gether with a set E of interactions over V .
We will use n = |V | to denote the number of nodes in the temporal graph, and
m = |E| to denote the total number of interactions.

Definition 1. (Simple Temporal Cycle) A temporal path between two nodes
u, v ∈ V is defined as a sequence of edges p = 〈(u, n1, t1), (n1, n2, t2), .., (nk−1, v, tk)〉
such that t1 < t2 < .. < tk and all edges in p appears in E. dur(p) := tk − t1

denotes the duration of the path. Often we use the more compact notation u
t1→

n1
t2→ n2 . . .

tk→ v.
A temporal cycle with root node r is a temporal path from r to itself. The

cycle is called simple if each internal node in the cycle occurs exactly once.

Simple Cycle Detection(SCD) Problem: Given a temporal network
G(V, E) and a time window ω, find all simple cycles C with dur(C) ≤ ω.

Example 1. Consider the interaction network given in Figure 1. This interaction

network contains 4 simple cycles, all with root node a. The cycles are: a
1→ c

6→
d

8→ a, a
1→ b

5→ c
6→ d

8→ a, a
1→ c

7→ e
10→ f

12→ a, and a
1→ b

5→ c
7→ e

10→ f
12→ a.

If ω = 10, the set of the first two cycles form the solution to the SCD Problem.

Algorithm 1 Simple algorithm to find all cycles

Require: Threshold ω, interactions E
Ensure: All simple cycles.
1: L← {}
2: for (u, v, t) ∈ E , ordered ascending w.r.t. t do

3: for p = v1
t1→ v2 . . .

tk−1→ vk
tk→ u ∈ L do

4: if t1 > t− ω then
5: if v1 = v then

6: Output v
t1→ v2 . . .

tk−1→ vk
tk→ u

t1→ v
7: else if v 6∈ {v1, . . . , vk} then
8: L← L ∪ {v1

t1→ v2 . . .
tk−1→ vk

tk→ u
t1→ v}

9: else
10: L← L \ {p} . prune paths exceeding the window duration

11: L← L ∪ {u t1→ v}

3 Enumerating All Simple Temporal Cycles

We present a one pass algorithm to enumerate all cycles in a given temporal
network in Algorithm 1. We assume that the interactions are stored in chrono-
logical order. The key idea behind the algorithm is to maintain a list(L) of all

valid temporal paths for a given window length ω. A temporal path p = v1
t1→

v2 . . .
tk−1→ vk

tk→ u is considered valid at time stamp t if t − t1 < ω. If the path
is not valid it is removed from the list as it can never be extended in future to
form a valid cycle (line 10). For each interaction (u, v, t), all valid paths that end
in u and do not contain v are extended to create a new temporal path (line 8).
Furthermore, all valid simple paths from v to u form a cycle with v as the root
node for interaction (u, v, t) (line 6).

4 Experiments

We evaluated the run-time and memory requirements of Algorithm 1 on three
different datasets (Higgs-twitter,Facebook-WSON and SMS-A) [4] for ω = 1hr
and 10hrs. We also analyzed the number and distribution of lengths of cycles in
the different datasets.

Runtime and Memory. As shown in Table 1 both time and memory re-
quirements increase with increasing ω, because the temporal paths remain valid
for a longer duration. The time and memory required for SMS-A is higher than
Facebook-WSON though SMS-A has fewer interactions because of the large num-
ber of temporal paths and cycles in SMS-A as compared to Facebook-WSON.

Analysis of Cycles found. The maximal length of the cycles found in-
creases as we increase ω. Facebook-WSON and SMS-A exhibit a similar cycle
length distribution pointing to the fact that both datasets capture messaging

Dataset Nodes Edges Time(min) Memory(MB)
ω = 1 ω = 10 ω = 1 ω = 10

Facebook-WSON 46 952 876 993 6.4 7.2 15 23
Higgs-twitter 304 691 526 167 39.5 198.5 158 1821
SMS-A 44 100 545 000 12 156.9 34 7905

Table 1. Time and memory requirement for different ω to find all the simple cycles.

(a) Facebook-WSON (b) SMS-A (c) Higgs-twitter

Fig. 2. Distribution of the number of cycles in function of the cycle length (a-c).

behavior over time. Higgs-twitter has much higher cycle lengths as compared to
the other two datasets. These results are shown in Figure 2.

5 Conclusion

We introduced a new problem in temporal pattern mining in interaction graphs:
finding all temporal cycles. We introduced a one-pass algorithm for this problem
based on maintaining all paths that can still become cycles. The results show
that the number and length of cycles differ substantially between the Twitter
dataset and the other two, social network related datasets. Future work includes
the development of more efficient algorithms for finding all simple cycles.

References

1. Hoffmann, F., Krasle, D.: Fraud detection using network analysis (2015), eP Patent
App. EP20,140,003,010

2. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM Journal
on Computing (1975)

3. Kumar, R., Calders, T., Gionis, A., Tatti, N.: Maintaining sliding-window neigh-
borhood profiles in interaction networks. In: ECML/PKDD (2) (2015)

4. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (Jun 2014)

5. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: WSDM
(2017)

