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ABSTRACT
Location-based social networks (LBSN) are social networks
complemented with location data such as geo-tagged activ-
ity data of its users. In this paper, we study how users of
a LBSN are navigating between locations and based on this
information we select the most influential locations. In con-
trast to existing works on influence maximization, we are
not per se interested in selecting the users with the largest
set of friends or the set of locations visited by the most
users; instead, we introduce a notion of location influence
that captures the ability of a set of locations to reach out
geographically. We provide an exact on-line algorithm and
a more memory-efficient but approximate variant based on
the HyperLogLog sketch to maintain a data structure called
Influence Oracle (Oracle in short) that allows to efficiently
find a top-k set of influential locations. Experiments show
that our algorithms are efficient and scalable and that our
new location influence notion favors diverse sets of locations
with a large geographical spread.

1. INTRODUCTION
One of the domains in social network analysis [1, 8, 18,

19] that received ample attention over the past years is in-
fluence maximization [14], which aims at finding influential
users based on their social activity. Applications like viral
marketing utilize these influential users to maximize the in-
formation spread for advertising purposes [4]. Recently, with
the pervasiveness of location-aware devices, social network
data is often complemented with geographical information.
For instance, users of a social network share geo-tagged con-
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Figure 1: Running example of a LBSN

tent such as locations they are currently visiting with their
friends. These social networks with location information
are called location-based social networks (LBSN). In LB-
SNs, the location information offers a new perspective to
view users’ social activities. This information can be uti-
lized to provide more constructive marketing strategies. For
example, unlike viral marketing which focuses on finding in-
fluential users and spreading the message via word of mouth
marketing (WOMM), influential locations can be found and
information can be spread using outdoor marketing (OOH)
e.g., by putting advertisements on billboards and distribut-
ing promotional items on such locations.

In this paper, we study navigation patterns of users based
on LBSN data to determine influential locations. Where
other works concentrate on finding influential users [22],
popular events [23], or popular locations [25], we are inter-
ested in identifying sets of locations that have a large geo-
graphical impact. Although often overlooked, the geograph-
ical aspect is of great importance in many applications. For
instance, consider the following example.

Example 1. A marketer is interested in creating visibil-
ity of her products to the maximum regions in a city by
offering free promotional items say T-shirts with a printed
promotional message. To do that she would like to choose
locations where she should distribute the promotional items
to visitors.

In order to choose the most suitable locations for offering
these items, not only the popularity of the places is im-
portant, but also the geographical reach. By visiting other



locations, people that were exposed to the advertisement,
especially the receivers of the promotional items, may indi-
rectly promote the products. For example, by wearing the
shirt they expose the T-shirt’s message to the people of the
places they go to later and talk about it with their friends
and relatives etc. Thus, when the goal is to create awareness
of the product name, it may be preferable to have a mod-
erate presence in many locations throughout the whole city
rather than high impact in only a few locations. An illus-
tration of this example is given in Figure 1. Nodes represent
popular locations of different categories, such as tourist at-
tractions (T1, T2), a metro station (M1), and hotels (H1 and
H2). Lowercase letters represent users. For each user, her
friends in the social network and check-ins have been given.
The top-2 locations with the maximal number of unique vis-
itors are T1, and M1. The geographical impact of these lo-
cations, however, is not optimal; visitors of these locations
reach only T2 and H1. On the other hand, the visitors of
T1 and H2 visit all locations, i.e., users a, f and b, c, e visits
T2 and H1 after visiting T1, respectively, and d, i after H2

visits H1 and M1.
To capture geographical spread and influence, in Section 3

we introduce the notion of a bridging visitor between two lo-
cations as a user that visits both locations within a limited
time span. If there are many bridging visitors from one lo-
cation to another, we say that there is an influence. We
introduce different models that capture when the number
of bridging visitors is considered to be sufficient to claim
influence between locations. One model is based on the ab-
solute number of visitors, one on the relative number, and
we also have variants that take the friendship graph into ac-
count. Based on these models, we define influence for sets of
locations and the location influence maximization problem:
Given a LBSN and a parameter k, find a set of k locations
such that their combined location influence on other locations
is maximal.

To solve this problem, in Section 4 a data structure, called
Oracle, is presented that maintains a summary of the LSBN
data that allows to determine the influence of any set of
locations at any time. Based on this data structure, we
can easily solve the location influence maximization problem
using a greedy algorithm. As for large LBSNs with lots
of activities the memory requirements of our algorithm can
become prohibitively large, we also develop a more memory-
friendly version based upon the well-known HyperLogLog
sketch [9].

In Section 5 we analyze several LBSNs to select reasonable
threshold values for our models. In Section 6 the effective-
ness and efficiency of our algorithms are demonstrated on
these datasets. In a qualitative experiment, the effect of our
new location influence notion is illustrated.

In summary, the main contributions of this paper are (i)
the introduction and motivation of a new location influence
notion based on LBSN data, (ii) the development of an effi-
cient online Influence Oracle, and (iii) the demonstration of
the usefulness of the location influence maximization prob-
lem in real-life LBSNs.

2. RELATED WORK
Influence maximization in the context of social networks

has already been studied in much detail [12, 11, 5]. We
focus here mainly on works that study the identification of
influential users, events, or locations from LBSNs data. We

divide the studies into two groups. The first group covers
studies using check-ins as an additional source of data to
identify influential users, whereas the second group utilizes
the check-ins for finding influential locations.

Influential users and events. Zhang et al. [23] use so-
cial and geographical correlation of users to find influential
users and popular events. Users with many social connec-
tions are considered influential as well as events visited by
them. Similarly, Wu et al. [22] identify influential users in
LBSNs on the basis of the number of followers of their ac-
tivities (check-ins). Li et al. [15] and Bouros et al. [2] on
the other hand, identify regionally influential users on the
basis of their activities. The focus of the work by Wen et
al. [21] and Zhou et al. [24] is to find and utilize the influen-
tial users for product marketing strategies such as word-of-
mouth. Our focus, however, is to find influential locations
that could be used, e.g., for outdoor marketing. None of the
previous works applies directly to our problem.

Influential locations in LBSNs. Zhu et al. [25], Hai [13],
and Wang et al. [20] study location promotion. Given a tar-
get location, their aim is to find the users that should be
advertised to attract more visitors to this location. Doan
et al. [7] computes the popularity ranks of locations based
on the number of visitors. On the other hand, in Zhou et
al. [24] study the problem of choosing an optimal location
for an event such that the event’s influence is maximized;
that is, they aim at finding a single location which attracts
most users.

Novelty. Our work is different from all of the above as we
focus on finding a set of influential locations where influence
is defined using visitors as a mean to spread influence to
other locations. Applications include outdoor marketing by
selecting locations with maximal geographical spread.

3. LOCATION-BASED INFLUENCE
We first provide preliminary definitions and then present

location influence. Moreover, we formally define the Oracle
problem and Location Influence Maximization problem.

3.1 Location-based Social Network
Let a set of users U and a set of locations L be given.

Definition 1. An activity is a visit/check-in of a user at a
location. It is a triplet (u, l, t), where u ∈ U is a user, l ∈ L
a location and t is time of the visit of u at l. The set of all
activities over U and L is denoted A(U ,L).

Definition 2. A Location-based Social Network (LBSN) over
U and L consists of a graph GS(U ,F ), called social graph,
where F ⊆ {{u, v}|u, v ∈ U} represents friendships between
users, and a set of activities A ⊆ A(U ,L). It is denoted
LBSN(GS ,A).

3.2 Models of Location-based Influence
We define the influence of a location by its capacity to

spread its visitors to other locations. The intuition behind
this is to capture a location on the basis of its ability to
spread its visitors that are exposed to a message, to other
locations. Thus, the location influence indirectly captures
the capability of a location to spread a message to other ge-
ographical regions. Recall our running example that depicts
the influence of locations in Figure 1. We can further fil-
ter the locations on the basis of their categories to find the



particular type of influential and influenced locations. For
example, in Figure 1, by considering the hotels as influential
locations and their influence only on tourist attractions (in-
fluenced locations), the most influential hotels can be found
which can spread the information to the maximum number
of tourist attractions. The effect of an activity in a location,
however, usually remains effective only for a limited time.
We capture this time with the influence window threshold
ω. Visitors that travel from one location to another within
a time ω are called Bridging visitors:

Definition 3. Bridging Visitor: Given LBSN(GS ,A) and
ω, a user u is said to be a bridging visitor from location s
to location d if there exist activities (u, s, ts), (u, d, td) ∈ A
such that 0 < td − ts ≤ ω. We denote the set of all bridging
visitors from s to d by VB(ω)(s, d).

The influence of a location s is measured by two factors,
i.e., the number of locations that are influenced by s and the
impact by which s influences the locations. The impact of
an influence between two locations s and d is captured by
the influence models (M).

3.2.1 Absolute Influence Model (MA)
In practice, if a significant number of people perform an

activity, then it is considered compelling. Thus, in order
to avoid insignificant influences among locations, we use a
threshold τA. The influence of a location s on a location d
is considered only if the number of bridging visitors from s
to d is greater than τA. The influence of a location s on d
under MA is represented by IA(ω,τA)(s, d):

IA(ω,τA)(s, d) :=

{
1, if |VB(ω)(s, d)| ≥ τA
0, otherwise

(1)

We omit ω and τA from the notations when they are clear
from the context.

Example 2. Consider the running example of Figure 1.
Let τA = 2 and ω = 2. Then, IA(T1,H1) = 1 because
|VB(T1,H1)| = 3 (≥ τA). Similarly, IA(H2,H1) = 1. How-
ever, IA(M1,H1) = 0 because |VB(M1,H1)| = 1( 6≥ τA).

The influence between two locations may change with the
value of τA and ω. For example, if we update the value of
τA to 3 and ω to 2, IA(T1,H1) = 1, however, IA(H2,H1)
becomes 0 because |VB(H2,H1)| = 2( 6≥ τA).

3.2.2 Relative Influence Model (MR)
In MA, the influences of two pairs of locations are consid-

ered equal as long as the number of their bridging visitors is
greater than τA. Sometimes, however, the relative number
of contributed bridging visitors is important. Consider, for
example, a popular location s that attracts many visitors
and a non-popular location d with few visitors. In such a
setting, to capture the influence of s on d, we may have to
set the absolute threshold τA very low. This low value of τA,
however, may result in many other popular locations being
influenced by s even if only a very small fraction of their
visitors come from s. Therefore, in such situations, it may
be beneficial to use different thresholds for different destina-
tions, relative to the number of visitors in these destination
locations. This notion is captured by the relative influence
model (MR). The influence of s on d under MR is repre-
sented by IR(ω,τR)(s, d) and is parameterized by the relative
threshold τR:

IR(ω,τR)(s, d) :=

1, if
|VB(ω)(s, d)|
|V (d)| ≥ τR

0, otherwise
(2)

where V (d) is the set of users who visited location d.

Example 3. Consider the running example given in Figure
1. Let τR = 0.4 and ω = 2. In this example, IR(T1,H1) =

1 because |VB(T1,H1)|
|VH1

| = |{b,c,e}|
|{b,c,d,e,i}| = 3

5
≥ τR, Similarly,

IR(H2,H1) = 1 and IR(M1,H1) = 0.

3.3 Friendship-based Location Influence
Activity data in LBSNs is often sparse in the sense that

the number of check-ins per location is low. In Section 6
we see that in the real-world datasets we use there have
only up to 6 check-ins per location on average. This spar-
sity of data affects the computation of location influence.
In order to deal with this issue, we use the observation that
users tend to perform similar activities as their friends (This
claim is verified and confirmed in Section 5). Hence, we de-
fine friendship-based influence between locations, by incor-
porating also friends of bridging visitors, which we consider
potential visitors. The set of bridging visitors together with
the potential visitors from a location s to d is represented by
VBf(ω)(s, d), and the set of visitors to a location d together
with their friends is denoted Vf (d).

In order to incorporate potential visitors in the influence
models, we replace VB(ω)(s, d) in Equation (1) and Equation
(2) by VBf(ω)(s, d), and V (d) in Equation (2) by Vf (d). The
updated influence of s on d under MA and MR respectively
are represented by IAf(ω,τAf )(s, d) and IRf(ω,τRf )(s, d). Again,
we omit ω, τAf and τRf from the notations when it is clear
from the context.

Example 4. Let τAf = 2 and ω = 2. We have IAf (T1,H1) =
1 because |VBf (T1,H1)| = |{a, b, c, d, e, f , g, i}| exceeds τAf .
Similarly, IAf (H2,H1) = 1 and IAf (M1,H1) = 1.

Furthermore, let τRf = 0.4 and ω = 2. We have IRf (T1,H1) =

1 because
|VBf (T1,H1)|
|VH1f |

= |{a,b,c,d,e,f ,g,i}|
|{a,b,c,d,e,f ,g,i}| = 1(≥ τRf ). Simi-

larly, IRf (H2,H1) = 1 and IRf (M1,H1) = 0.

3.4 Combined Location Influence
Based on the influence models, a location can influence

multiple other locations. In order to capture such influenced
locations, we define the location influence set :

Definition 4. Given a location s, and an influence model
M , the location Influence Set φIM (s) is the set of all loca-
tions for which the influence of s on that location under M
is 1, i.e., φIM (s) = {d ∈ L | IM (s, d) = 1}.

Next, we define combined location influence for a set of
locations S. To do this, we use the following principled ap-
proach: any activity at one of the locations of S is considered
an activity from S. In that way we can capture the cumu-
lative effect of the locations in S; even though all locations
in S in isolation may not influence a location d, together
they may influence it. The bridging visitors from a set of
locations S to d is represented by VB(ω)(S, d):

VB(ω)(S, d) =
⋃
s∈S

VB(ω)(s, d) (3)

The influence of a set of locations S on location d under
MA and MR is defined similarly as for single locations.



Example 5. In Figure 1, let ω = 2, τA = 3 and S =
{T1,M1}. Under MA, T2 6∈ φ(T1) and T2 6∈ φ(M1). How-
ever, T2 ∈ φ(S) as |VB(S,T2)| = |{a, f , g}| ≥ τA.

3.5 Problem Formulation
Based on these influence models, we now define two prob-

lems related to finding influential locations in a LBSN. We
first present a problem statement of constructing a data
structure that can be utilized for providing many interest-
ing applications called Influence Oracle. Next, we present a
problem statement for one such application, i.e., finding the
top-k most influential locations.

Problem 1. (Oracle Problem) Given a LBSN and an in-
fluence model M , construct a data structure that allows to
answer: Given a set of locations S ⊆ L and a threshold τ ,
what is the combined location influence φIM (S) of S.

Problem 2. (Location Influence Maximization Problem)
Given a parameter k, a LBSN , and an influence model M ,
the location influence maximization problem is to find a sub-
set S ⊆ L of locations, such that |S| ≤ k and the number of
influenced locations |φIM (S)| is maximum.

4. SOLUTION FRAMEWORK
We first provide a data structure to solve the Oracle prob-

lem. We present an exact algorithm in Section 4.1 and an
approximate but more memory- and time-efficient algorithm
in Section 4.2. Finally, in Section 4.3, we solve Problem 2
with a greedy algorithm.

4.1 Influence Oracle
In this section, we provide a data structure for maintaining

location summaries for each location. We assume activities
arrive continuously and deal with them one by one. The
summary ϕ(s) for a location s consists of the list of all loca-
tions to which it has bridging visitors. We present an online
algorithm to incrementally update these summaries.

Definition 5. The Complete location summary for a lo-
cation s ∈ L is the set of locations that have at least one
bridging visitor from s, together with these bridging visitors;
i.e., ϕ(s) := {(d,VB(s, d)) | d ∈ L ∧ |VB(s, d)| > 0}.

If a user u visits a location s at time t, then u acts as a
bridging visitor between all the locations u visited within
the last ω time stamps and s. Therefore, for each user
u ∈ U , we maintain a set of locations the user has visited
and the corresponding latest visiting time. This is called the
visit history H(u) and is defined as H(u) := {(s, tmax)|u ∈
V (s), tmax = max{t | (u, l, t) ∈ A}}. Suppose that we have
the complete location summary for the check-ins so far and
the visit history of all users, and a new activity (u, d, t) ar-
rives. We update the complete location summary as follows:
the location-time pair (d, t) is added in H(u) if d does not
already appear in the visit history, otherwise the latest visit
time of d is updated to t in H(u). Furthermore, for every
other location-latest visit time pair (s, t′) in the history of
u, ϕ(s) is updated by adding user u to the set of bridging
visitors from s to d provided that the difference between the
time stamps t − t′ does not exceed the threshold ω. This
procedure is illustrated in Algorithm 1.

Example 6. We illustrate the algorithm using the running
example shown in Figure 1. For simplicity, we only consider

Algorithm 1: Updating complete location summaries

1 Input: New activity (u, d, t), threshold ω, ϕ(l) for l ∈ L
2 Output: Updated ϕ(.) and H(.)
3 begin

4 foreach (s, t
′
) ∈ H(u) do

5 if t− t
′
≤ ω then

6 if (d,VB(s, d)) ∈ ϕ(s) then

7 V
′
B(s, d)← VB(s, d) ∪ {u}

8 ϕ(s)← ϕ(s) \ {(d,VB(s, d))}
9 else

10 V
′
B(s, d)← {u}

11 ϕ(s)← ϕ(s) ∪ {(d,V
′
B(s, d))}

12 else

13 H(u)← H(u) \ {(s, t
′
)}

14 if ∃t
′

: (d, t
′
) ∈ H(u) then

15 H(u)← (H(u) \ {(d, t
′
)})

16 H(u)← H(u) ∪ {(d, t)}

the activities of two users: d and i. We also add a new
activity of d at H2 at time stamp 5. In this example, we
consider ω = 2. The activities are processed one by one in
increasing order of time. We show how the visit historyH(i),
H(d) and the complete location summaries ϕ(H1), ϕ(H2),
ϕ(M1) evolve with different activities at different time stamp
in Figure 2. Note, at time stamp 5 only ϕ(M1) is updated
even though M1 and H1 are both in the visit histories of d
because ω = 2. The visit history of d is cleaned by removing
H1 from the H(d) as no future activities by d affect ϕ(H1).
The visit time of H2 is updated to the latest visit time.
Similarly, H(i) is also cleaned up.

t = 1 t = 2 t = 3 t=5

Activity:
(i,H2, 1)
(d,H2, 1)

(i,M1, 2)
(d,H1, 2)

(i,H1, 3)
(d,M1, 3)

(d,H2, 5)

H(i) : {(H2, 1)}
{(H2, 1),
(M1, 2)}

{(H2, 1),
(M1, 2),
(H1, 3)}

{(H1, 3)}

H(d) : {(H2, 1)}
{(H2, 1),
(H1, 2)}

{(H2, 1),
(H1, 2),
(M1, 3)}

{(M1, 3),
(H2, 5)}

ϕ(H1) : {} {} {(M1, {d})} {(M1, {d})}

ϕ(H2) : {} {(H1, {d}),
(M1, {i})}

{(H1, {d}),
(M1, {i, d})}

{(H1, {d}),
(M1, {i, d})}

ϕ(M1) : {} {} {(H1, {i})}
{(H1, {i}),
(H2, {i})}

Figure 2: Updating ϕ(l) and H for ω = 2 for MA

It can be observed from the example that a new activity of
a user u only updates the complete location summary of the
locations in the recent visit history of u. Notice that, since
the activities of a user arrive in strictly increasing order of
time, the size of H(u) is upper bounded by ω, as only loca-
tions that are visited within a time window ω are processed.
The proofs of the following proposition are trivial and thus
omitted.

Proposition 1. The time required to process an activity
is O(ω log(|U |)). The the complete location summary ϕ(.)



can be stored in O(|L||U |) memory and for the visit history
H(.) in O(ω) memory.

The time required to produce φ(S) from ϕ(.) for given
threshold τ and set of locations S is O(|S||L||U | log |U |).

Relative and Friendship-based Location Influence.
For the relative models, we additionally have to maintain the
total number of unique visitors per location, which can be
done in the worst case time O(log(|U |)) and space O(|U |) per
activity and hence does not affect the overall complexity. For
the friendship-based location influence, for every activity, we
process the same activity at the same time for all friends as
well. As the number of friends is bounded by |U |, we get:

Proposition 2. The time required to process an activity
in the friendship-based influence models is O(ω|U | log(|U |)).
The memory required is the same as for the other models.

4.2 Approximate Influence Oracle
In the worst case the memory requirements of the exact

algorithm presented in the last section are quite stringent:
for every pair of locations (s, d), in ϕ(s) the complete list
of bridging visitors from s to d is kept. Therefore, here
we present an approximate algorithm for maintaining the
complete location summaries in a more compact form. This
compact representation will represent a significant saving
especially in those cases where the window size ω is large
since in that case the number of bridging visitors increases.

We observe that when computing the number of bridging
visitors between s and d we do not need the set of bridging
visitors between s and d, but only the cardinality of that
set. For the relative number of bridging visitors, we addi-
tionally need only the numbers of visitors |V (s)|. Further-
more, as per Equation 3, in order to find the accumulated
complete location summary, we need to combine two com-
plete location summaries; for instance: the complete loca-
tion summary ϕ({s1, s2}) is obtained by taking the following
pairwise union of ϕ(s1) and ϕ(s2): if ϕ(s1) and ϕ(s2) re-
spectively contain the pairs (d,VB(s1, d)) and (d,VB(s1, d)),
then ϕ({s1, 22}) contains (d,VB(s1, d)∪VB(s2, d)). But then
again, for further computations, we only need the cardinality
of the bridging visitor sets. Hence, if we accept approximate
results, we could replace the exact set VB(s, d) with a suc-
cinct sketch of the set that allows to take unions and get
an estimate of the cardinality of the set. In our algorithm,
we use the HyperLogLog sketch (HLL) [9] to replace the
exact sets VB(s, d) and V (s). The HLL sketch is a memory-
efficient data structure of size 2k that can be used to ap-
proximate the cardinality of a set by using an array. The
constant k is a parameter which determines the accuracy of
the approximation and is in our experiments in the order of
6 to 10. Furthermore, the HLL sketch allows unions in the
sense that the HLL sketch of the union of two sets can be
computed directly from the HLL sketches of the individual
sets. For our algorithm, we consider the HLL algorithm as
a black box. By using HLL, we not only reduces memory
consumption but also improve computation time, because
adding an element in a HLL sketch can be done in constant
time and taking the union of two HLL sketches takes time
O(2k); that is: the time to take the union of two sets is
independent of the size of the sets.

Proposition 3. Let b = 2k be the number of buckets in the
HLL sketch. The time needed to process an activity using

the HLL sketch is O(ω). The memory required to maintain
the complete location summary is O(|L|b).

4.3 Influence Maximization
In order to solve the location influence maximization prob-

lem, we apply the standard greedy algorithm to compute
top-k as obtaining an exact solution is intractable as the
next proposition states.

Proposition 4. The following problem is NP-hard for all
influence models: given a LBSN and bounds k and β, does
there exist a set of locations S of size k such that |φ(S)| ≥ β.

Proof. NP-hardness follows from a reduction from set
cover. Consider an instance S = {S1, . . . ,Sm} with all Si ⊆
{1, . . . ,n} and bound k of the set cover problem: does there
exist a subset S ′ of S of size at most k such that

⋃
S ′ =

{1, . . . ,n}. We reduce this instance to a LBSN as follows:
L = {l1, . . . , ln} ∪ {s1, . . . , sm}, U = {u1, . . . ,um}, F = ∅,
A = {(ui, si, 0) | i = 1 . . .m} ∪ {(ui, lj , j) | i = 1 . . .m, j ∈
Si}. That is, every element j of the domain {1, . . . ,n} is
associated to a location lj , and for every set Si we introduce
a location si visited by user ui at time 0. Furthermore, user
ui visits all locations lj such that j ∈ Si at time stamp j.
If we use the absolute model with τ = 1 and ω ≥ n+ 1, for
i = 1 . . .m, φ({si}) = {lj | j ∈ Si}. As such there exists a
set cover of size k if and only if there exists a set of locations
S of size k such that |φ(S)| = n.

Recall that the influence of a set of locations S is com-
puted by accumulating the effect of all locations in S. It is
hence possible that two locations s and s′ separately do not
influence a target location d because individually they have
too few bridging visitors to d, but together they reach the
threshold. This situation occurs for instance in Figure 1,
for the locations H2 and M1. These locations individually
do not reach the threshold to influence H1 for τA = 2 and
ω = 1. However, together they do. One inconvenient conse-
quence of this observation is that the influence function that
we want to optimize is not sub-modular [17]. Indeed, in the
example above, adding H2 to the set {M1} gives a higher
additional benefit (1 more influenced location) than adding
H2 to {}. Therefore, we do not have the usual guarantee on
the quality of the greedy algorithm for selecting the top-k.

The main reason that we do not have the guarantee is that
the benefit is not gradual; before the threshold is reached it
is 0, after the threshold is reached it is 1. This means that
a location that has τ − 1 bridging visitors to 1000 other lo-
cations each, gives the same benefit as a location that does
not have any bridging visitors. Clearly, nevertheless, the
first location is more likely to lead to a good solution if later
on additional locations are selected. Therefore, we would
like to incorporate potential future benefits into our objec-
tive function. Thus, in order to compute the influence of a
location, we consider locations that are influenced as well
as those locations that are not yet influenced but have po-
tential to be so in future. To characterize the potential of
future benefit in combination with the number of influenced
locations, we use the following formula:

LI(S) = (1− α)× |φ(S)|+ (α)×
∑

d∈L−S

(min{|VB(S, d)|, τ})

(4)
In this formula, α = [0, 1] represents a trade-off between the
number of influenced locations and a reward for potential
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influenced locations. For relative models, we replace the
|VB(S, d)| with |VB(S, d)|/|V (d)|.

Next, we apply a greedy method on the basis of location
influence to find top-k locations. We start with an empty
set S of locations and iteratively add locations to it until we
reach the required number of top elements: k. In each step,
for each location s ∈ L, we evaluate the effect of adding s
to S, and keep the one that gives the highest benefit LI(S).
Then, we update S ← S ∪ {l}.

Example 7. Consider the case in Figure 2 for ω = 1,
ϕ(H2) = {(H1, {d}), (M1, {i})}, ϕ(M1) = {(H1, {i})} and
ϕ(H1) = {(M1, {d})}. We aim to find top-2 locations in
this example with α = 0.1 and τ = 2. During the first iter-
ation, LI(H2) = 0.9 × 0 + 0.1 × (1 + 1) = 0.2, because H2

does not completely influence any other location, however
H1 and M1 are potential influenced locations for the bridg-
ing visitors d and i, respectively. Similarly, LI(M1) = 0.1
and LI(H1) = 0.1. Thus, we choose H2 as first seed as it
has maximum value. In the next iteration, we first combine
the seed H2 with M1 and compute the combined influence.
Here, LI({H2,M1}) = 0.9 × 1 + 0.1 × (2) = 1.1. Similarly,
LI({H2,H1}) = 1.1 . Since, M1 and H1 provide equal ben-
efit of 0.9, when combined with H2, thus we can randomly
choose either M1 or H1 as a second seed.

5. LBSN DATA ANALYSIS
When constructing the friendship-based influence model

the assumption was made that friends tend to follow friends.
Furthermore, the influence models of Section 3.3 have sev-
eral parameters to set: τ and ω. Before going to the ex-
periments, first in this section we verify and confirm the
friendship assumption and show how to set the thresholds
with reasonable values based on an analysis of the LBSN
datasets given in Table 1.

5.1 Mobility analysis of friends
In real life, usually activities of friends are more similar

than activities of non-friends. In LBSNs, this implies that a
visit of a user to a location increases the chances of visits of
his/her friends to the same location. We considered this as-
sumption when constructing our friendship-based influence
model in Section 3.3. We illustrate the correctness of this
assumption by computing the correlations between activi-
ties of users, their friends, and non-friends: Let Lu and Lv
be the locations visited by users u and v, respectively. The
correlation between activities of u and v is measured by the
Jaccard Index [3] between Lu and Lv. The average correla-
tion of activities of users and those of their friends is denoted
friendship correlation (pfcorr), and the average correlation

Users Locations Check-ins POIs

FourSquare 16K 803K 1.928M 582K
BrightKite 50K 771K 4.686M 631K
Gowalla 99.5K 1.257M 6.271M 1.162M

Table 1: Statistics of datasets

between activities of users and their non-friends is denoted
Non-friendship Correlation (pnfcorr). In order to avoid an
unreasonable bias due to the fact that friends tend to live
in the same city, we restrict our computation of the average
non-friendship correlation to users in the same city. We ran-
domly picked four regions of the United States, i.e., Brook-
lyn, Manhattan, Pittsburgh, and Washington and consider
the activities of users in these regions to study the correla-
tions. The statistics of pfcorr and pnfcorr of all the users are
given in Figure 3. The figure presents boxplots without out-
liers. It can be seen that median of pfcorr, even though still
small, is up to 5 times larger than pnfcorr. The same pat-
tern is observed for all the datasets, thus only results for
Gowalla are shown due to space constraints. This validates
the claim that the activities of friends are more similar than
non-friends.

5.2 Setting ω and τ

In order to determine the value of influence window thresh-
old ω, we measure the time difference between consecutive
visits of users to distinct locations. The cumulative distri-
bution functions (CDF) for three LBSNs are given in Figure
4. It can be seen that for all LBSNs in our study, 80% of
the consecutive activities are performed within 8 hours. Af-
ter that, there is only a moderate increase in the number of
activities with respect to the time interval. Thus, in order
to capture only the most common activities, we keep ω = 8.
However, it can, of course, be changed if the data distribu-
tion is different, or there are different user or application
requirements.

We furthermore compute the absolute and relative num-
ber of bridging visitors. In order to do that, we consider
both the models with-friends and without-friends, for each
pair of locations with at least one bridging visitor. The cu-
mulative distribution functions for each of these numbers
are depicted in Figure 5. We can utilize the CDF values for
controlling the number of influences in the dataset, and thus
also for finding the suitable values of thresholds for models.
The values of thresholds are an application dependent choice
and can be considered accordingly. For example, if an ap-
plication requires to find many influential relationships, and
indirectly many influential and influenced locations, then
a lower threshold should be considered and vice versa. In
this paper, we consider the top 20% influential relationships
among locations for all the models. Thus, the thresholds
for all the models are their corresponding CDF values of 0.8
(100%-20%=80%). Therefore, the values of τA, τR, τAf and
τRf are 2, 0.4, 120 and 0.6, as shown in Figures 5a, 5c, 5b,
and 5d, respectively.

6. EVALUATION
We conducted our experiments on a Linux machine with

Intel Core i5-4590 CPU @3.33GHz CPU and 16 GB of RAM,
running the Ubuntu 14 operating system. We implemented
the exact and the approximate algorithms in C++.
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Figure 5: Cumulative distribution function (CDF) of thresholds for all influence propagation models

No. of Buckets (b)
64 128 256

R
el
.
er
ro
r Abs. mean ±σ 0.02 ± 0.15 0.01 ± 0.1 0.01 ± 0.08

Abs. friends mean ±σ 0.167 ± 0.63 0.08 ± 0.45 0.04 ± 0.49
Rel. mean ±σ 0.06 ± 0.23 0.06 ± 0.23 0.06 ± 0.23

Rel. friends mean ±σ 0.05 ± 0.21 0.05 ± 0.21 0.05 ± 0.2

T
im

e with-out
friends

Exact 38.7
Approx 40 37.5 42.9

with
friends

Exact 389.6
Approx 61.9 67.1 70.9

M
em

o
ry with-out

friends
Exact 505
Approx 531 644 835

with
friends

Exact 3790
Approx 541 658 855

Table 2: Exact vs Approx algorithm comparison for accu-
racy (relative error), time (sec) and memory (MB)

Datasets. We used 3 real-world datasets : FourSquare [10],
BrightKite, and Gowalla [6]. These datasets each consisted
of two parts: the friendship graph and an ordered list of
check-ins. A check-in record contains the user-id, check-in
time, GPS coordinates of location, and a location-id. The
statistics of the datasets are given in Table 1.

Data Prepossessing. The real-life datasets required
preprocessing because many locations are associated with
multiple location identifiers with slightly different GPS co-
ordinates. Consider, for instance, Figure 6. In this figure,
13 GPS coordinates that appear in the FourSquare dataset
are shown which corresponds to different locations Ids in the
dataset, but which clearly belong to one unique location. In
order to resolve this issue, we clustered GPS points to get
POIs. We used the density-based spatial clustering algo-
rithm [16] with parameters eps=10 meters and minpts=1
to group the GPS points. New location Ids are assigned to
each cluster which were used in all our experiments. All 3
datasets have similar problems. The statistics of the new
Ids are reported in column POIs of Table 1.

Figure 6: GPS coordinate of 13 location-ids on GoogleMaps

6.1 Approximate vs. Exact Oracle
We analyzed the accuracy of the influence approximation

based on the HLL sketch. We also analyzed memory con-
sumption and computation time improvement for the ap-
proximate approach. The results are similar for all the
datasets and hence we only present results for BrightKite

due to space constraints.
Approximation Accuracy. For every location with a

non-empty influence set, we used the HLL-based approxi-
mate version of the Oracle to predict the size of the influ-
ence set. Then the relative error as compared to the real
size was computed for every location. In Table 2 the mean
and standard deviation of this relative approximation er-
ror over all locations with a non-empty influence are given.
The experiments are performed for both with-friends and
without-friends for the absolute influence model and relative
influence model. We ran the experiments for different num-
bers of buckets (b) for the HLL sketch, being, 64, 128 and
256. As can be seen in the table, the errors are unbiased
(0 on average), and the standard deviation decreases as the
number of buckets increases. The error is a bit higher in the
relative model as compared to the absolute model because
in the relative model the influence is computed by taking
the ratio of two approximated sets. Values for b beyond
256 yielded only modest further improvements and hence
we used b = 256 in all further experiments.

Approximation Efficiency. Next, we compare the com-
putation time and memory requirements for the approxi-
mate approach with that of the exact approach. In order to
do so, we computed influence sets with friends and without
friends. The computation times and memory consumption
are shown in Table 2. The approximate approach outper-
forms the exact approach up to a factor 6 in time using
only 15% of memory for the models including friends. Due
to the sparsity of data, however, the gain for the without-
friend case is negligible. This is because the sizes of the
sets of bridging visitors are very modest and hence there is
no need to reduce memory consumption. It can be observed
that time and memory of the approximate approach increase
with increasing number of buckets b.

6.2 Influence of ω and τ

Runtime. We study the runtime of the approximate al-
gorithm on all the datasets for different values of ω := 8, 20
and 50. The average runtime for processing all the activities
(Tp) under the models varies only depending on whether or
not we consider friends; it does not depend on τ . The ora-
cle query time (Tq) is independent of τ and model. Hence
we only show results for τ = 2. The run times are shown in
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Figure 7: Time to process all activities (Tp) and query Or-
acle (Tq) for τ = 2 at different ω

Figure 7 for the three datasets FourSquare, BrightKite and
Gowalla. The running time increases with increasing influ-
ence window size ω as more locations from the visit history
remain active. Running time is higher in the with-friends
case which is not surprising either as the number of users to
include in the bridging visitors sets increases due to the ad-
dition of friends. The time taken to process dataset Gowalla
is the highest as it has the largest number of locations.

In Figure 9b, we report the time taken in function of the
number of activities for ω = 8. Per 1, 000 activities in the
BrightKite dataset the runtime is reported. As can be seen
in the figure, the average time taken per 1, 000 activities
remains constant. The time taken for the friendship-based
influence model is the highest as more users are merged.

Memory Consumption. We also study the memory re-
quired by the approximation algorithm on all the datasets
for different values of ω := 8, 20 and 50. Unlike for the pro-
cessing time, the average memory required to process all the
activities under the models does not vary based on whether
we consider friends or not. This is because the HLL sketch
storing the bridging visitor set size remains constant in size
even if a larger number of users is added to it. The memory
requirement increases slightly with ω as more locations are
getting influenced due to a larger influence window. The
results are shown in Figure 8. In Figure 9a, we report the
memory used as a function of the number of activities for
ω = 8. Per 1, 000 activities in the BrightKite dataset the
runtime is reported. The total memory requirements in-
crease linearly with time as new locations come in over time
for which a complete influence summary needs to be main-
tained. In Figure 10 on the other hand, we see that over
time the size of user visit history remains constant due to
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Figure 9: Performance evaluation for processing 1000 activ-
ities for ω = 8

the pruning of outdated locations in the visit histories.

6.3 Influence Maximization
Influence of α. Our next goal is to study how the influ-

ence maximization algorithm performs for different values of
α. In order to avoid data sparsity issues, we filter out those
locations which have only one visitor from all the datasets.
We tested the spread of top 200 locations obtained by con-
sidering values of α from 0.01 to 0.99. We observed that the
number of bridging visitors per location is highly skewed as
can be learn from Figure 5a. Due to this, the potential in-
fluenced locations having few bridging visitors are less likely
to affect the influenced set of the locations. The effect of
varying alpha on the influence spread is shown in Figure 11.
As expected for these sparse datasets, our algorithms per-
form best with a lower value of α. We use α = 0.03 for our
experiments.

τ
Time (sec)

k = 10 k = 20 k = 50
τA = 2 2 3 35
τR = 0.4 5 6 46
τAf = 120 2 5 46
τRf = 0.6 4 6 53

Table 3: Time taken to find top k locations (BrightKite)

Computation time. We study the computation time
for finding top-k influential locations under both the with-
friends and the without-friends influence models. The run-
time is close in the both absolute and relative models. The
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time increases with k. Nevertheless, the increase is modest;
for instance, finding the top-50 locations takes less than a
minute. We report the results in Table 3.

6.4 Qualitative Experiment
In order to demonstrate our model of location influence,

we compared the results of our method with a naive ap-
proach for selecting top-k locations. In the naive approach,
we selected the top k locations such that the number of
distinct users visiting those locations is maximized. This
result is compared to the top-k most influential locations
found using the absolute influence model with τ = 1. We
compared the influence spread by the top-k locations of both
approaches.

We considered the activities performed in the area of New
York in all the three data-sets and fetched top-5 locations for
ω = 8 hours for both approaches. We further computed the
influence spread for the selected locations of both approaches
using the absolute influence model. Top-5 locations with
their influenced locations are plotted using Google Maps as
shown in Figure 12 for FourSquare and BrightKite. In the
figure, it can be observed that for BrightKite our method
leads to a set of locations with a much larger spread as com-
pared to the naive approach, both geographically and in
terms of the number of locations influenced. On the other
hand, the spread for both approaches for FourSquare is sim-
ilar. The reason is that for this dataset the problem of se-
lecting the top locations is almost trivial as there is only a
small set of locations visited multiple times with as a result
that once this limited set of locations is selected, it does not
matter which other users are selected.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced a notion that can be used to

optimize outdoor marketing strategies such as finding opti-
mal locations for advertising products to maximize the geo-
graphical spread. In order to do that, we captured the inter-
actions of locations on the basis of their visitors to compute
the influence of locations among each other. We provided
two models namely the absolute influence model and the
relative influence model. We further incorporated friends of
users in order to deal with data sparsity. We proposed an
Oracle data structure to efficiently compute the influence of
locations on the basis of these models. Oracle can be used
for different applications such as finding top-k influential lo-
cations. In order to maintain this data structure, we first

(a) Naive BrightKite (16
locations)

(b) Our BrightKite (72 lo-
cations)

(c) Naive FourSquare (239
locations)

(d) Our FourSquare (239
locations)

Figure 12: Comparison of top- 5 influential locations (green)
and their spread (red) between naive and our approach

provided a set-based exact algorithm. Then, we optimized
the time and memory requirements of the algorithm up to 6
times and 7 times, respectively, by utilizing a probabilistic
data structure. Finally, we provided a greedy algorithm to
compute the top-k influential locations. In order to evalu-
ate the methods, we utilized three real datasets. We first
analyzed the LBSN datasets: FourSquare, BrightKite and
Gowalla to verify some claims and to provide optimal values
for thresholds of the influence models. Then, we evaluated
our approaches for the computation of the Oracle and find-
ing top-k locations in terms of accuracy, computation time,
memory requirement and scalability. We further show the
effectiveness of our proposed models by comparing the influ-
ence spread of top-k locations fetched by our approach with
that of a naive approach.

In the future, we plan to enrich location influence mod-
els by incorporating the activities users perform with their
friends in groups. Moreover, we aim to provide distributed
mechanisms for computing the Oracle data structures and
influences for the models.
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