Location Influence in Location-based Social Networks

Muhammad Aamir Saleem^{1,2}, Rohit Kumar¹, Toon Calders^{1,3}, Xike Xie^{2,4} and Torben Bach Pedersen²

¹Department of Computer and Decision Engineering Université Libre de Bruxelles, Belgium

²Department of Computer Science Aalborg University, Denmark

³Department of Mathematics and Computer Science Universiteit Antwerpen, Belgium

⁴Suzhou Institute for Advanced Study University of Science and Technology of China, China

1. Motivation

2. Location Influence Definition

Out-of home (OOH) marketing covers 9% of marketing budget: 2.96 billion USD in year 2015. Example:

- Locations display banners.
- Distribute promotional free gifts e.g., T-shirts.

Location Influence: Capacity to spread its visitors to other locations.

Influence Strength: Number of users travelling between the locations.

- **Absolute Influence Model:**
 - Influence exists if bridging visitors within a given time are greater than threshold
- Example: $T_1 => T_2 := |VB(T_1,T_2)| >= 2$
- > **Relative Influence Model:**

yelp facebook. twitter Facebook Places 2 foursquare

> Check-in data to determine Influence

"How to increase geographical spread of

the message using OOH on LBSN data!! "

Biasness of popular locations, consider relative influence

- Example: T1=> H1 := |b,c,e| / | b,c,e,i,d | >=0.4
- **Friendship-based Influence:**
 - Handle sparsity.
 - Predict future influence.

						3. Algo	rithm		
Check-ins Users				Exac	t version:	with m for orro	m. o otivnitym	Approximate version:	
$\frac{loc}{T_1}$	$\begin{array}{ccc} t=1 & t=2 & t=3 \\ b,c,e,f & a,h & f \\ f & f \end{array}$			> Upo	date Locatio	n Summary q	Compress the set using HyperLogLog*(HLL)!		
T_2 M_1 H_1	a, h g	f, g i b, c, d, e	a $d \rightarrow Update user history H(u).$ d e i						Remains exactly the same.
H_2	d, i		> Pru	t ne user histo t	ory for a ω . t = 2	t = 3	Time Complexity improves:		
	a, f	, h			$(i, H_2, 1)$ $(d, H_2, 1)$	$(i, M_1, 2)$ $(d, H_1, 2)$	$(i, H_1, 3)$ $(d, M_1, 3)$	$(d, H_2, 5)$	<mark>Ο(ω log(</mark> U)) -> Ο(ω)
					(/TT = 1)				

Brooklyn Manhattan Pittsburgh Washington 30 Regions time (in hrs)

Gowalla

40

50

6. Result: Influence spread

7. Result : Scalability w.r.t computation time and memory requirements

More than 4 times better spread!

WSDM 2017: The Tenth ACM International Conference on Web Search and Data Mining, Cambridge March 2017

