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Abstract. Large networks are being generated by applications that keep
track of relationships between different data entities. Examples include
online social networks recording interactions between individuals, sen-
sor networks logging information exchanges between sensors, and more.
There is a large body of literature on computing exact or approximate
properties on large networks, although most methods assume static net-
works. On the other hand, in most modern real-world applications, net-
works are highly dynamic and continuous interactions along existing con-
nections are generated. Furthermore, it is desirable to consider that old
edges become less important, and their contribution to the current view
of the network diminishes over time.

We study the problem of maintaining the neighborhood profile of each
node in an interaction network. Maintaining such a profile has applica-
tions in modeling network evolution and monitoring the importance of
the nodes of the network over time. We present an online streaming al-
gorithm to maintain neighborhood profiles in the sliding-window model.
The algorithm is highly scalable as it permits parallel processing and
the computation is node centric, hence it scales easily to very large net-
works on a distributed system, like Apache Giraph. We present results
from both serial and parallel implementations of the algorithm for differ-
ent social networks. The summary of the graph is maintained such that
query of any window length can be performed.

1 Introduction

Modern big-data systems are confronted with scenarios in which data are gath-
ered in exceedingly large volumes. In many cases, the system entities are modeled
as graphs, and the recorded data represent fine-grained activity among the graph
entities. Traditionally, graph mining has focused on studying static graphs. How-
ever, as the emergence of new technologies makes it possible to gather detailed
information about the behavior of the graph entities over time, a growing body
of literature is devoted to the analysis of dynamic graphs.



In this paper we focus on a dynamic-graph model suitable for recording inter-
actions between the graph entities over time. We refer to this model as interaction
networks [26], while it is also known in the literature as temporal networks [21]
or temporal graphs [23]. An interaction network is defined as a sequence of time-
stamped interactions E over edges of a static graph G = (V,E). In this way, many
interactions may occur between two nodes at different time points. Interaction
networks can be used to model the following modern application scenarios:

1. the set of nodes V represents the users of a social network or a communication
network, and each interaction over an edge represents an interaction between
two users, e.g., emailing, making a call, re-tweeting, etc.;

2. the set of nodes V represents autonomous agents, and each edge represents an
interaction between two agents, e.g., exchanging data, being in the physical
proximity of each other, etc.

We study the problem of maintaining the neighborhood profile of each node
of a interaction network. In particular, we are interested in maintaining a data
structure that allows to answer efficiently queries of the type “how many nodes
are within distance r from node v at time t?” Graph neighborhood profiles have
been studied extensively for static graphs [6, 25]. They provide a fundamental
primitive for mining large graphs, either for characterizing the global graph
structure, or for discovering important and central nodes in the graph. In this
work, we extend the concept of neighborhood profiles for interaction networks,
and we develop algorithms for computing neighborhood profiles efficiently in
large and rapidly-evolving interaction networks. Our methods can be used for
network monitoring, and allow detecting changes in the graph structure, as well
as keeping track of the evolution of node centrality and importance.

To make our methods scalable to large and fast-evolving networks, we design
our algorithms under the data-stream model [18, 24]. This model requires to
process the interactions in an online fashion, and perform fast memory updates
for each interaction processed. To make our model adaptable to changes and
allow concept drifts we focus on the sliding-window model [14], a data-stream
model that incorporates a forgetting mechanism, by considering, at any time
point, only the most recent items up to that point. One uncommon benefit of
our algorithm is that because of the data structure we incrementally maintain,
the user can decide about the exact window length at query time.

Concretely, in this paper we make the following contributions: (i) we in-
troduce a new problem of efficiently querying neighborhood profiles on interac-
tion networks in Section 3; (ii) we develop and analyze an exact but memory-
inefficient (Section 4) and an inexact but more efficient streaming algorithm for
the sliding-window model (Section 5); (iii) we provide experimental validation
of the algorithms in Section 7.

2 Preliminaries

We consider a static underlying graph G = (V,E). An interaction over G is a
time-stamped edge ({v, w}, t) indicating an interaction between nodes v and w.



An interaction network over G is now defined as a pair (G, E), where G is a
static graph and E is a set of interactions. We should point out that we do not
need to know E beforehand.

If the set of interactions E = {({u, v}, t)} is ordered by time, it can be seen as
a stream of edges, and written as E = 〈(e1, t1), (e2, t2), . . .〉, with t1 ≤ t2 ≤ . . . .
Note that two fixed nodes may interact multiple times in E .

In our model we are only interested in recent events, and hence queries over
our interaction network will always include a window length w — recall that
the summary will be maintained in such a way that all window lengths are
possible, i.e., every query can use a different window length. The snapshot graph
at time t for window w, denoted G(t, w), is the triplet (V,E(t, w), recent) in
which E(t, w) = {e | (e, t′) ∈ E with t − w < t′ ≤ t}, and recent is a function
mapping an edge e ∈ E(t, w) to the most recent time stamp that an interaction
between the endpoints of e occurred, that is, recent(e) = max{t′ | (e, t′) ∈
E such that t− w < t′ ≤ t}.

Furthermore, for the graph G we have the usual definitions; a path of length
k between two nodes u, v ∈ V is a sequence of nodes u = w0, . . . , wk = v such
that {wi−1, wi} ∈ E, for all i = 1, . . . , k, and all wi are different. The distance
between u and v in the graph G is defined as the length of the shortest path
between u and v, if such a path exists, otherwise it is infinity. The distance
between nodes u and v in the graph G is denoted by dG(v, w), or simply d(v, w),
if G is known from the context.

3 Problem statement

The central notion we are computing in this paper is the neighborhood profile:

Definition 1. Let G = (V,E) be a graph and let u ∈ V be a node. The r-
neighborhood of u in G, denoted NG(u, r), is is the set of all nodes that are
at distance r from node u, i.e., NG(u, r) = {v | dG(u, v) = r}. We write
nG(u, r) = |NG(u, r)| to denote the cardinality of the r-neighborhood. We will
call the sequence pG(u, r) = 〈nG(u, 1),nG(u, 2), . . . ,nG(u, r)〉 the r-neighborhood
profile of the node u in graph G.

In this paper we study the problem of maintaining the neighborhood profile
pG(t,w)(u, r), for all nodes u ∈ V , as new interactions arrive in E . Our solution
allows w to vary; hence, at a time point t, we should be able to query for
the neighborhood profile pG(t,w)(u, r) for any w. If there is an upper bound
given for w, say wmax , then we can use this information to improve memory
consumption. However, this is optional, and we can set wmax = ∞. On the
other hand, r is given and fixed. Obviously, by computing pG(t,w)(u, r) we also
compute pG(t,w)(u, r

′) for r′ < r.
Let H = G(t, w). To simplify the notation we will denote NH(u, r), nH(u, r),

pH(u, r) by Nt,w(u, r), nt,w(u, r), pt,w(u, r), respectively. Moreover, if w = wmax ,
then we will use Nt(u, r), nt(u, r), pt(u, r), respectively. We will also write G(t) =
G(t, wmax ) and E(t) = E(t, wmax ).
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Fig. 1. A toy interaction network, and three snapshot graphs with a window size of 3.

Example 1. Consider the illustration given in Figure 1 of an edge stream over
the set of nodes V = {a, b, c, d, e}. The numbers on the edges denote the time of
interactions over the edges. Let the window length be 3. The snapshot graphs
G(t) at times t = 3, 4, 5 are also depicted in Figure 1. The 3-neighborhood
profiles of node c in these graphs are respectively (1, 0, 0), (1, 1, 1), and (2, 1, 0).

To accomplish our goal we maintain a summary St of the snapshot graph
G(t, wmax ), from which we can efficiently compute the neighborhood profiles
pt,w(u, r), for every node u in the graph G. More concretely, we require that the
summary St has the following properties:

1. The summary St of G(t, wmax ) should require limited storage space.
2. The size of the r-neighborhood nt,w(u, r) should be easy to compute from
St. The time to compute nt,w(u, r) from St will be called query time.

3. There should be an efficient update procedure to compute Sti from Sti−1

and the edge eti on which the interaction at time-stamp ti is taking place.

4 Maintaining the exact neighborhood profile

We first introduce an exact, yet memory-inefficient solution. This exact solution
will form the basis of a memory-efficient and faster approximate solution based
on the well-known hyperloglog sketches.

4.1 Summary for neighborhood functions

An essential notion in our solution is the horizon of a path, which expresses the
latest time that needs to be included in the sliding window in order for the path
to exist; i.e., if the sliding window starts after the horizon the path will not exist
in it anymore.

Definition 2. Let G(t) = (V,E, recent) be a snapshot graph and p = 〈v0, . . . , vk〉
a path in it. The edge horizon of p in G(t), denoted by ht(p), is the time stamp
of the oldest edge on that path: ht(p) = min {recent((vi−1, vi)) | i = 1, . . . , k}.

We will next define the horizon between two nodes u and v. Let PH(u, v) be
all the paths from u to v in a graph H. If H = G(t), then we will write Pt(u, v).
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Fig. 2. Two toy snapshot graphs along with h(u, b, i) for i = 0, . . . , 4.

Definition 3. The horizon for length i between two different nodes u and v is
the maximum horizon of any path of at most length i between them; that is,
ht(u, v, i) = max {ht(p) | p ∈ Pt(u, v), |p|+ 1 ≤ i}. We set ht(u, v, i) = −∞ if no
such path exists. For any node u, ht(u, u, i) is defined to be ∞.

Example 2. Consider the leftmost graph given in Figure 2, along with, for every
node u ∈ {a, b, c, d, e}, the list of horizons h(u, b, 0), . . . , h(u, b, 4). In this graph
h(d, b, 1) = h(d, b, 2) = 2, as there is an edge with a time stamp of 2. However,
h(d, b, 3) = 3 as there is a path 〈d, e, c, b〉 with a horizon of 3.

The horizon between two nodes u and v for a length i is very important for
our algorithm as it expresses in which windows u and v are at a distance i or
less. Windows that include the horizon will have the nodes at distance i, shorter
windows will not. Hence, if for a node u we know all horizons ht(u, v, i), for all dis-
tances i and all other nodes v, we can give the complete neighborhood profile for
u for any window length. Hence, the summary St of the snapshot graph G(t) will
be the combination, for all nodes u and distances i = 0, . . . , r, of the summaries
Su
t for Nt(u, i). In other words, for every node u, we will be maintaining the sum-

mary Su
t = (Su

t [0], . . . , Su
t [r]), where Su

t [i] = {(v, ht(u, v, i)) | ht(u, v, i) > −∞}.

Example 3. For the snapshot graph given in Fig. 2, the summary St consists of
Su[i], i = 0, . . . , r. Assuming r = 3, the summaries for a and b are as follows:

Sa

distance a b c d e

0 ∞
1 ∞ 3 4 1
2 ∞ 3 4 1 4
3 ∞ 3 4 4 4

Sb

distance a b c d e

0 ∞
1 ∞ 3 2
2 3 ∞ 3 2 3
3 3 ∞ 3 3 3

4.2 Updating summaries

We describe how to update the summary St as new edges arrive in the stream
E or old edges expire. The latter event happens for edges whose time-stamp



Algorithm 1: AddEdge({a, b} , t), updates a summary upon addition of
{a, b} at time t

1 foreach i = 0, . . . , r − 1 and (x, t′) ∈ Sa[i] do g(b, x, i + 1)← min(t′, t) ;

2 foreach i = 0, . . . , r − 1 and (x, t′) ∈ Sb[i] do g(a, x, i + 1)← min(t′, t) ;
3 Propagate({g(v)}v∈V )

Algorithm 2: Propagate({g(v)}v∈V ), Processes all propagations that
are in the general register g .

1 foreach i = 1, . . . , r do
2 foreach v, x ∈ V such that g(v, x, i) is set do
3 if Merge(x, v, g(v, x, i), i) then
4 foreach (v, u) ∈ Et \ {a, b} do
5 horizon ← min(g(u, x, i), recent(v, u));
6 if g(u, x, i + 1) not set or horizon > g(u, x, i + 1) then
7 g(u, x, i + 1)← horizon;

becomes smaller than t − wmax . Removing an edge is easy enough; we need
to remove all pairs (x, t′) from summaries Su

t [i], for all u, x ∈ V , i = 1, . . . , r,
and t′ ≤ t − wmax . This operation could also be postponed and executed in
batch. Updating the summary St to reflect the addition of a new-coming edge
et, however, is much more challenging. Let us first look at an example.

Example 4. Consider the horizons of the two graphs given in Figure 2. Notice
that adding an edge {a, b} changed h(d, b, 4) from 3 to 4 because we introduced a
path 〈d, e, c, a, b〉. However, the key observation is that we also changed h(e, b, 3)
to 4 due to the path 〈e, c, a, b〉, h(c, b, 2) to 4 due to the path 〈c, a, b〉, and h(a, b, 1)
to 6 due to the path 〈a, b〉.

As can be seen in the example, the addition of an edge may result in a
considerable number of non-trivial changes. However, the example also hints
that we can propagate the summary updates.

Assume that we are adding an edge {a, b}, and this results in change of
h(u, v, i). This change is only possible if there is a path p = 〈u = v0, . . . , vk = v〉
through {a, b}. Moreover, we will also change h(u, vk−1, i− 1). By continuing in
this logic, it is easy to see that all the updates can be processed via a breadth-
first search from node b. Furthermore, whenever we can conclude that h(u, v, i)
does not need to be updated, we can stop exploring this branch since we know
that no extensions of this path will result in updates. The pseudo-code for this
procedure is given in Algorithms 1–3.

In the algorithm we update the summaries, distance by distance, and we set
new (earlier) horizons that have possibly appeared due to the newly added edge.
To maintain the updates we use a function g ; g(u, x, i) = h indicates that there is



Algorithm 3: Merge(x, v, t, i), adds x to a summary of v with a distance
of i and edge horizon t. If false is returned, then the branch can be pruned.

1 if (x, t′) ∈ Sv[i] for some t′ ≥ t then return false;
2 remove all (x, t′) from Sv[i] for which t′ < t;
3 add x, t to Sv[i];
4 return true;

a new path between u and x of length i and horizon h. As not every new path of
length i will lead to an improved horizon, we do not propagate this information
immediately to the summary of the neighboring nodes, but rather wait until
we have processed all paths of length i − 1. For those new paths that improve
the summary of a node u, we will then propagate this information further on in
the graph. For every distance i, when we process an update to a summary we
will record potential updates to horizons of length i + 1 as follows: if g(u, x, i)
leads to a better horizon of length i between u and x; that is, either there is
not yet an entry (x, h) in Su[i], or h < g(u, x, i), then we will propagate this
information to its neighbors u. Let t = min(recent(u, v), g(v, x, i)), then we will
propagate g(u, x, i+ 1) = t, if t > g(u, x, i+ 1), that is, we were able to improve
our potential update.

Example 5. We will continue our running example given in Figure 2. Let us
demonstrate how the horizons of h(u, b, i), u ∈ {a, b, c, d, e} are updated once we
introduce the edge {a, b}. In Figure 3 we illustrate how the propagation is done.
At the beginning of each round we compare the current summary Su[i] against
the new candidate horizon g(u, b, i). If the latter is larger, then we update the
summary as well as propagate new candidate horizons to the neighboring nodes.
In the subsequent figures it is indicated what are the changes with respect to
the distances to node b. In the first step, due to the addition of edge {a, b} at
time 7, for distance 1 the update g(a, b, 1) = 7 is propagated. When processing
this update indeed it is seen that the summary Sa[1] is updated. Therefore,
this update is further propagated to the neighbors, leading to the following
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Fig. 3. Propagation of updates for the vertex b when adding (a, b) for the rounds
i = 1, . . . , 4. The format of boxes is y/z, where y is the time of b in Sv[i] and z = g(v, b, i)
at the beginning of ith round. The edges used for propagation during ith round are
marked in red. We do not show propagation during the last round as it is not needed.



updates: {g(c, b, 2) = 4, g(e, b, 2) = 1}. As only the first update changes the
summary Sc[2], only this update will be further propagated. Furthermore, for a
there is the update g(a, b, 2) = 7 that needs to be processed. Propagation leads
to the following new updates (first three for g(c, b, 2), last two for g(a, b, 2)):
{g(a, b, 3) = 4, g(b, b, 3) = 3, g(e, b, 3) = 4, g(c, b, 3) = 4, g(e, b, 3) = 1}. The last
update g(e, b, 3) = 1 will never be considered as it is dominated by the update
g(d, b, 3) = 4. These updates are then processed and those implying changes in
the summary are again propagated.

The proofs of the following proposition is omitted due to space constraints.

Proposition 1. AddEdge updates the summary correctly. Let n = |V |, m =
|E|, and r be the upper bound on the distances we are maintaining. The time
complexity of AddEdge is O(rmn log(n)). The space complexity is O(rn2).

5 Approximating neighborhood function

The algorithm presented in the previous section computes the neighborhood
profiles exactly, albeit, it has high space complexity and update time. In this
section we describe an approximate algorithm, which is much more efficient in
terms of memory requirement and update time.

The approximate algorithm is based on an adaptation of the hyperloglog
sketch [17] to the sliding-window context, similar to the adaptation by Chab-
choub and Hébrail [9]. The resulting sliding hyperloglog sketch has the following
properties: (i) it provides a compact summary of a stream of items, and (ii) it
allows to answer the following question: “How many different items have ap-
peared in the stream since a given time point t?” Subsequently, this sketch can
replace the neighbor sets that need to be maintained by the exact algorithm.

5.1 Hyperloglog and sliding-window hyperloglog sketches

The hyperloglog sketch [17] consists of an array of numbers, whose size is 2k, and
a hash function η that assigns each item of the stream in a uniformly-random
number in the range [0, 2n−1]. The value of n should be sufficiently large in the
sense that 2n−k should significantly exceed M , the number of distinct items in
the stream. We will use the standard assumption that n ∈ O(logM). Initially
all cells of the hyperloglog sketch are set to 0. The update procedure for the
hyperloglog sketch is as follows: if an item x arrives in the stream, the first k
bits of the binary representation of η(x) are used to determine which entry of the
sketch array will be updated. We denote this index by ι(x). From the remaining
n − k bits η′(x), the quantity ρ(x) is computed as the number of trailing bits
in the binary representation of η′(x) that are equal to 0, plus 1. If the current
value at the entry ι(x) of the sketch is smaller than ρ(x), we update the value
of that entry. Clearly, the more different items in the stream, the more likely
it is to observe large tails of 0’s and the higher the numbers in the hyperloglog
sketch will become.



In order to make the hyperloglog sketch working in the sliding-window set-
ting, we need to store multiple values per entry. Initially the sliding-HLL sketch
will start with an empty set for each entry. The process a new item x arriving in
the stream at time t, we first need to retrieve the set of time-value pairs associ-
ated with the index ι(x). We then need to add the pair (t, ρ(x)) to that set and
remove all entries (t′, β) for which β ≤ ρ(x) (as t is the most recent time-stamp,
it is also t′ < t). We denote the sliding-HLL sketch after processing the stream
of events S = 〈σ1, . . . , σn〉 by sHLL(S). More formally:

Definition 4. Let S = {(t1, β1), . . . , (tn, βn)} be a set of time-value pairs. De-
fine the subset of time-decreasing values of S as

dec(S) = {(ti, βi) | βi > βj for all (tj , βj) ∈ S with ti ≤ tj}.

A sliding hyperloglog sketch sHLL of dimension k is an array of length 2k in
which every entry contains a set of time-value pairs. For a stream S, sHLL(S)
is recursively defined as follows:

– If S = 〈〉, then sHLL(S)[i] = {}, for all indices i = 1 . . . 2k.
– Otherwise, if S = 〈S ′, (x, t)〉 then sHLL(S)[i] = dec(sHLL(S ′)[i]∪{(t, ρ(x)})

for i = ι(x); while sHLL(S)[i] = sHLL(S ′)[i] for all other i = 1 . . . 2k.

Example 6. Suppose that the hash η, ι, and ρ are as follows (recall that η de-
termines the other two quantities):

item a b c d e
η 100 01 101 11 010 11 010 10 001 10
ι 1 3 3 2 2
ρ 3 1 2 2 1

For the stream of items a, b, a, c, d, e, the resulting sliding HLL sketches are
respectively the following:

ι 0 1 2 3

ρ {} {} {} {}
a−→ ι 0 1 2 3

ρ {} (1, 3) {} {}
b−→ ι 0 1 2 3

ρ {} (1, 3) {} (2, 1)
a−→ ι 0 1 2 3

ρ {} (3, 3) {} (2, 1)

c−→ ι 0 1 2 3

ρ {} (3, 3) {} (4, 2)
d−→ ι 0 1 2 3

ρ {} (3, 3) (5, 2) (4, 2)

e−→ ι 0 1 2 3

ρ {} (3, 3), (6, 1) (5, 2) (4, 2)

When b arrives, cell 3 gets value 1, which is updated later on when c arrives, since
c has the same index, but a higher value. For d and e the situation is opposite;
first d arrives giving a value of 2 in cell 2. Later on, when e arrives this value is
not updated even though e has the same index because its value is lower.

The next proposition shows that with the sliding HLL sketch we can indeed
obtain an approximate answer regarding the number of different items since
time s, for any s specified at query time. We omit the proof as it follows imme-
diately from the definition.



Proposition 2. Let S = 〈σ1, . . . , σn〉 be a stream of events in which event σt
arrives at time t. Then for every index 1 ≤ s ≤ n, it holds that for every entry
i = 1, . . . , 2k, it is HLL(σs, . . . , σn)[i] = max{r | (t, r) ∈ sHLL(S)[i] and t ≥ s},
where max({}) = 0.

5.2 Computation of neighborhood profiles based on sliding HLL

We are now ready to describe our technique for computing the approximate
neighborhood profiles. Recall that we are working over a streaming graph with
nodes from a set V and a stream of edges E = {(e1, t1), (e2, t2), . . .}. We have used
Et to denote the set of edges arrived until time t, i.e., Et = {(e, t′) ∈ E | t′ ≤ t}.
The approximate sketch is very similar to the exact sketch, with the exception
that all sets of (node,time)-pairs are replaced by the much more compact sliding
HLL sketch. Furthermore, in order to be able to propagate the updates to its
neighbors, for every node we should know its neighbors. Hence, at time t, the
summary consists, for every node u, of the following components:

Nu
t = {(v, recent(u, v)) | (u, v) ∈ Et} and Cu

t = 〈Cu
t [1], Cu

t [2], . . . , Cu
t [r]〉,

where Cu
t [i] = sHLL({(v, ht(p)) | p ∈ Pt(u, v), |p| ≤ i}).

The set Nu
t specifies the neighbors of node u in the graph Gt = (V,Et). Note

that in the set Nu
t we keep pairs (v, t) such that v is a neighbor of u and t is

the most recent time-stamp that an interaction between u and v took place.
This time-stamp is needed to decide whether the neighbor v is active for a given
window length that is specified at query time.

To update the summary Ct from the summary at the previous time instance,
after the addition of an edge (a, b) at time t, we follow the almost exact same
propagation method as the exact algorithm. The only difference is that instead of
keeping all pairs (v, ht(p)), we now keep a sliding HLL sketch over those pairs, as
specified in the previous section. Updating a sliding HLL sketch is slightly more
involved than updating the exact summary since we need to keep the sketch as
a time-decreasing sequence. The pseudo-code for this is given in Algorithm 4.

Finally, to update the sketch, we use Algorithms 1 and 2, with the exception
that the summary Su[·] is replaced with the sketch Cu[·][j] for a fixed bucket j.
We then execute 2k copies of the algorithm, each handling its own bucket. As
these algorithms are syntactically the same to the ones of the exact algorithm,
we omit them. The proof of the following proposition is omitted due to space
constraints.

Proposition 3. The sketch version of AddEdge performs correctly. Let n =
|V |, m = |E|, and r be the upper bound on the distances we are maintaining.
The time complexity of the sketch version of AddEdge is O(2krm log2(n)). The
space complexity is O(2knr log2 n).

Note that a näıve way to maintain approximate neighborhood profiles is to
execute the sketching algorithm from scratch after each newly-arriving interac-
tion. In the worst case, this brute-force method has roughly the same space and



Algorithm 4: SketchMerge(x, v, t, i), adds x to a summary of v with a
distance of i and edge horizon t.

1 if (y, t′) ∈ Cv[i] for some t′ ≥ t, y ≥ x then return false;
2 remove all (y, t′) from Cv[i] for which t′ ≤ t and y ≤ x;
3 add (x, t) to Cv[i];
4 return true;

time complexity as our incremental algorithm. However, the brute-force method
is expected to require as much space and time as indicated by the worst-case
bound, while for our method the worst-case analysis is very pessimistic: most
of the times the summaries will not by propagated at the whole network and
updates will be very fast. This is demonstrated in our experimental evaluation.

6 Related work

During the last two decades, a large body of work has been devoted to developing
algorithms for mining data streams. Interestingly, the area started with process-
ing graph streams [20], but a lot of emphasis was put on computing statistics
over streams of items [12, 18], and many fundamental techniques have been de-
veloped for that setting. Many different models have been studied in the context
of data-stream algorithms, including the sliding-window model [14], which in-
corporates a forgetting mechanism where data items expires after W time units
from the moment they occur. Existing work has considered estimating various
statistics in this model [2, 3].

The concept of sketching is closely related to data streams, as efficient stream-
ing algorithms operate by maintaining compact sketches, which provide approx-
imate statistics and summaries of the data stream seen so far. Popular data-
stream sketches include the min-hash sketch [10], the LogLog sketch [15], and
its improvement, the hyperloglog sketch [17], all of which have been used to ap-
proximate distinct counts. Distance distribution sketches [6, 11] are built on top
of the distinct-count sketches, and provide a powerful technique to approximate
the number of neighbors of a node in a graph within a certain distance. Such
sketches have been used extensively in graph-mining applications [6, 25].

As graphs provide a powerful abstraction to model a wide variety of real-
world datasets, and as the amount of data collected gives rise to massive graphs,
there is growing interest on algorithms for processing dynamic graphs and graph
streams. This includes work on data structures that allow to perform efficient
queries under structural changes of the graph [16, 19], as well as the design of
algorithms for computing graph primitives under data-stream models. Work in
the latest category includes algorithms for counting triangles [4, 5, 27] and other
motifs [7, 8], computing graph sparsifiers [1], and so on. Most of the above papers
consider the standard data stream model, although Crouch et al. [13] study many
graph algorithms on the sliding-window model.



Table 1. Characteristics of interaction networks.

Nodes Distinct Total Clustering Diameter Effective
Dataset edges edges coefficient diameter

Facebook 4 039 88 234 88 234 0.60 8 4.7
Cit-HepTh 27 771 352 801 352 801 0.31 13 5.3
Higgs 166 840 249 030 500 000 0.19 10 4.7
DBLP 192 357 400 000 800 000 0.63 21 8.0

Table 2. Average relative error as a function of `.

` Facebook Cit-HepTh Higgs DBLP

16 0.28 0.23 0.22 0.22
32 0.13 0.16 0.19 0.15
64 0.10 0.12 0.16 0.12
128 0.08 0.10 0.14 0.09

7 Experimental evaluation

We provide an empirical evaluation of the approximate algorithm presented in
Section 51. We evaluate the space requirements, time, and accuracy. We com-
pare the approximate algorithm with the exact algorithm presented in Section 4
and the off-line HyperANF algorithm [6]. Since our implementations have not
been optimized, we compare to a HyperANF version developed under the same
conditions and without low-level optimizations such as broad-word computing.

Datasets and setup: We use four real-world datasets obtained from SNAP
repository [22]. We take snapshots of the largest datasets Cit-HepTh and DBLP of
500 000 and 400 000 edges, respectively. Three of the data sets, Facebook, DBLP,
and Cit-HepTh, have unique edges and do not contain any time information.
To create an interaction network out of these static graphs, we order the edges
randomly. In the case of DBLP we allow edges to repeat until we have 800 000
edges. Statistics of these datasets are reported in Table 1.

As a maximum window size we use wmax =∞, that is, we do not delete any
previous edges. We also set r = 3, except for one experiment where we vary r.

Accuracy of the sketch: In order to test the accuracy of the sketch algorithm,
we compare the algorithm with the exact version, and we compute the average
relative error as a function of number of buckets (` = 2k). Running the exact
algorithm is infeasible for the large datasets due the memory requirements, and
hence we use only a subset of the large datasets to measure accuracy. The results
are given in Table 2. As expected from previous studies, the accuracy increases
with `.

Running time for updating summaries: Our next goal is to study the run-
ning time needed to update the summary upon adding an edge. The average

1 Code at : https://github.com/rohit13k/NeighborhoodProfile.git



Table 3. Average time in seconds needed to process 1 000 edges as a function of `

` Facebook Cit-HepTh Higgs DBLP

16 0.06 7.20 3.92 0.80
32 0.08 12.57 6.84 1.31
64 0.12 28.64 12.12 2.10
128 0.17 50.74 21.38 3.45

running time for every 1 000 edges is reported in Table 3.2 Detailed time mea-
surements are shown in Figure 4. We took average run time by running 3 iteration
of Facebook and Cit-HepTh and 2 iteration of Higgs and DBLP datasets.

The time needed to process an edge depends on two factors. First, as we
increase the number of buckets `, the processing time increases. Second, a single
edge may cause a significant number of updates if it connects two previously
disconnected components. We see the fluctuating nature and peaks in the pro-
cessing time in Figure 4 as some edge-addition updates require more time than
others whenever an edge between two disjoint cluster of nodes comes close the
propagation list grows and hence the time taken increases. Interestingly enough,
for large datasets, DBLP and Higgs, the time taken to process a new edge becomes
almost constant after the snapshot graphs stabilize.

The average processing time depends greatly on the characteristics of the
dataset. For example, we can process DBLP quickly despite its size. We suspect
that this is due to high diameter and high clustering coefficient.

We parallelize the algorithm to measure the speed-up. In Figure 5 we see
that by using 4 threads we are able to process the edges 4 times faster.

We also study the processing time as a function of the maximum distance r.
Here we use Facebook and DBLP, and vary r = 2, . . . , 5. The results are given in
Figure 6. We see that the processing time increases exponentially as a function
of r. This is expected as the neighborhood sizes also increase at a similar rate.

Space complexity: We also evaluate the memory usage of our method. The
results are shown in Figure 7. Initially, the need for space increases rapidly as
new nodes are added with every edge. Once all the nodes are seen the memory
increase drops as only the sketches of the nodes are increasing. Note that we are
not pruning any edges. As expected, the memory requirement increases linearly
with `.

Comparison with off-line method: Finally, for reference, we compare with a
non-streaming algorithm that uses the same hyperloglog technology, the Hyper-
ANF algorithm of Boldi et al. [6]. To support querying of any window length as
supported by our algorithm we modified the HyperANF algorithm to a Sliding-
HyperANF algorithm by replacing the HyperLogLog sketch with Sliding Hy-
perLogLog sketch. Running the Sliding-HyperANF algorithm in DBLP takes 3.6
seconds per sliding window. In contrast, for the same data-set, our streaming
algorithm gives a rate of 0.003 seconds per sliding window.

2 We measure the time for batches to get a more accurate reading.
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Fig. 5. Running times for DBLP with parallelized version of the algorithm.

8 Concluding remarks

We studied the problem of maintaining the neighborhood profile of the nodes
of an interaction network—a graph with a sequence of interactions, in the form
of a stream of time-stamped edges. The model is appropriate for many modern
graph datasets, like social networks where interaction between users is one of the
most important aspects. We focused on the sliding-window data-stream model,
which allows to forget past interactions and adapt to new drifts in the data.
Thus, the proposed problem and approach can be applied to monitoring large
networks with fast-evolving interactions, and used to reason how the network
structure and the centrality of the important nodes change over time.
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Fig. 7. Memory utilization as a function of `

We presented an exact algorithm, which is memory inefficient, but it set the
stage for our main technique, an approximate algorithm based on sliding-window
hyperloglog sketches, which requires logarithmic memory per network node, and
has fast update time, in practice. The algorithm is also naturally parallelizable,
which is exploited in our experimental evaluation to further improve its perfor-
mance. One desirable property of our algorithm is that the sketch we maintain
does not depend on the length of the sliding window, but the length can be
specified at query time.
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