Cost Model Based Approach for Graph Partitioning in Spark GraphX

Rohit Kumar^{1,2}, Alberto Abello² and Toon Calders^{1,3}

¹Department of Computer and Decision Engineering Université Libre de Bruxelles, Belgium ²Department of Service and Information System Engineering Universitat Polit ecnica de Catalunya (BarcelonaTech), Spain

³Department of Mathematics and Computer Science Universiteit Antwerpen, Belgium

1. Distributed Graph Processing

5. Pregel Model in GraphX

2. Our Ambition!

6. BPMN for Pregel

Verma et. al.(VLDB 2017) An experimental comparison of partitioning strategies in distributed graph processing.

3. Our Approach

Using system specific cost models for Pregel implementation.

Pregel is the most popular programing abstraction to define distributed graph processing algorithms

Edge Table

(RDD)

(A) - (B)

′A) **| | |** (C .

(B) (C)

(A) - (E)

E) C

- We provide cost model for Pregel API in Spark GraphX.
 We validate the cost model on multiple combination of graph and algorithm.
 - 4. Graph Representation in GraphX

7. Derived Cost functions

(1)

 $cPregel(V, E, s, A, P_e, P_v) := cInit(V, A, |P_v|)$

 $+\sum_{i=1}^{s} cSuperStep(V_i, E_i, A, M_{i-1}, P_e, P_v)$

cApply = cost of running vertex Program on active vertex + β_w Data written on disk + α_1

cGather = β_r read data from previous step + cost of running sendMsg Program on active edges + cost of merging all messages locally + β_w Data written on disk + α_2

cReduce = γ reading all messages + cost to merge all messages for one vertex + α_3 (3) $cSuperStep(V_{i}, E_{i}, A, M_{i-1}, P_{e}, P_{v}) := \max_{0 \le q \le |P_{v}|} \{ cApply(V_{i}^{q}, M_{i-1}^{q}, A_{v}, P_{e}, P_{v}) \}$

 $+ \max_{0 \le k \le |P_e|} \{ cGather(E_i^k, M_i^k, V_i^k, A_s, A_m, P_e) \}$ (2)

 $+ \max_{0 \le q \le |P_v|} \{cReduce(M_i^q, V_i^q, A_m, P_e, P_v)\}$

We obtained the system specific constants i.e. alphas, betas and gamma and validated on different dataset, algorithm and partitioning strategy combinations.

Dataset	Partition Strategy			
	Algorithm	EdgePartition2D	CRVC	DBH
	PageRank	96.4	97.9	97.7
CollegeMsg	$\overline{\mathbf{CC}}$	97.6	96.1	96.7
	PageRank	97.7	-	99.3
twitter	$\mathbf{C}\mathbf{C}$	98.9	98.7	97.1
	PageRank	94.6	97.2	99.8
Higgs	CC	97.9	95.9	94.9

8. The Future

Image source: http://note.yuhc.me/2015/03/graphx-partition-strategy/

Similar to cost based query optimization in RDBMS use cost models to pick most optimal partitioning strategy for a given input graph and algorithm.

References:

• Rohit et. al. (ADBIS 2017) Cost Model for Pregel on GraphX

• Verma et. al.(VLDB 2017) An experimental comparison of partitioning strategies in distributed graph processing.

